If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+78x+12=0
a = 8; b = 78; c = +12;
Δ = b2-4ac
Δ = 782-4·8·12
Δ = 5700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5700}=\sqrt{100*57}=\sqrt{100}*\sqrt{57}=10\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-10\sqrt{57}}{2*8}=\frac{-78-10\sqrt{57}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+10\sqrt{57}}{2*8}=\frac{-78+10\sqrt{57}}{16} $
| 6n+5-4n=-5 | | (7,-6);m=1*2 | | 2(4u-5)=7 | | 2=5-3x | | 2(6x-4)=6(2x-6) | | 5(1-x)+7x=-2(2-3x)+x+4 | | -188+7x=-5x+124 | | 5(2x+3)-15=50 | | (6,-2);m=3 | | x+5=2x-16 | | (1/6)x+(5/2)=-(1/3) | | v/2-10=8 | | 4y-3×(2y+5)+3=-5×(y-2)-3y | | 44-2(3x+4=-18x | | 1/4t+9=2 | | (4,-5);m=6 | | 1/3y+5=1/7y | | 1/6x+5/2=-1/3 | | -91+9x=107+15x | | M+3n=7;n-2,0,1 | | 6.4x-2.1-x=86 | | 5/2x+1/4=3/x | | 6n+5-2n=-15 | | -32x^2+22500x=0 | | -10x-10=-70 | | (12,5);m=-3 | | p-15=13-6p | | w−45+3=w−32w-45+3=w-32 | | 7-8m-2=-3 | | T=25+0.5y | | -170+6x=73+15 | | 0.08y+0.09(9000-y)=0.24y |